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Chapter 1
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Introduction
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Itlgh frequency electromagnetic analysis of problems involving complex geometry de-

scriptions of the scattering bodies has been of great interest in recent years. Spline

and polynomial type surfaces are commonly used in high frequency modeling of com-

plex structures such as aircraft, ships, reflectors, etc., and is therefore of interest to

develop efficient and accurate solutions for the purpose of RCS and antenna pattern

predictions. Numerical techniques for treating these problems such as Physical Op-

tics (PO) [1] and the Method of Moments (MM) [2], while simple in concept, still

require vast amount of computer resources for even intermediate sized targets. The

use of closed form ray optical solutions, whenever possible, is one way to increase

efficiency and also provide important physical insight into the various scattering and

diffraction processes.

• In many instances, high-frequency scattering and diffraction mechanisms can be

described in terms of ray optical fields that behave locally like plane waves propagat-

ing along the trajectories of the Geometrical Optics (GO) [3] and the Geometrical

Theory of Diffraction (GTD) [4]. Although these rather simple ray optical techniques

can be used to solve many complex practical electromagnetic scattering/radiation

problems, they fail to describe the more complicated field behavior inside transition

regions where wave focusing due to higher Order phase catastrophes and or changes

from illuminated to shadow zones occur. Removing the errors within these regions

mw
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would greatly enhance the Applicability of GTD as indeed has been shown for its uni-

form version, the so called UTD [5]. The UTD approach for dealing with transitional

field behavior involves the use of appropriate transition functions that eliminate the

errors of GO/GTD solutions, and also provide a smooth connection into the regions

where these classical ray optical formulations remain valid.

A common method of analysis for high-frequency scattering and diffraction prob-

lems involves the use of radiation integrals as well as plane wave integral represen-

tations for the fields, with the asymptotic approximations for the various scatter-

ing mechanisms found from the critical point contributions of the integrand. This

method of analysis when applied to a cubic polynomial surface containing an edge re-

sults in a stationary phase integral characterized by two stationary phase points that

are arbitrarily close to one another or to an integration endpoint. Uniform asymp-

totic evaluation of integrals with such analytical properties involves the incomplete

Airy function [6] which serves as a canonical integral for the description of transition

region phenomena associated with composite shadow boundaries. Transition regions

of such type result from the merging of the reflection shadow boundary associated

with an edge in the scattering surface, and the smooth caustic of reflected rays aris-

ing from the confluence of the two stationary phase points near a zero-curvature

(inflection) point. When the reflection shadow boundary is not in the immediate

vicinity of the smooth caustic the conventional UTD diffraction coefficient [5] which

involves the Fresnel integral as a canonical function can be used to effectively de-

scribe the edge diffracted fields. Furthermore, the ordinary Airy integrals and their

derivatives are the appropriate canonical functions for the description of the high-

frequency fields in the neighborhood of the smooth caustic [7]. However, when there

is a confluence of both reflected and caustic type shadow boundaries, neither the

Fresnel integral nor the ordinary Airy integrals adequately describe the transition

region phenomena, and they must be appropriately replaced by the incomplete Airy

functions. Although these functions are not so easily generated [8] as, for example,
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the Fresncl integral or the complete Airy functions, a rnetbod for their emcient and

accurate computation was recently developed [9] and allows for the formulation of

uniform asymptotic solutions that are useful for engineering purposes.

In this report, an extended UTD solution for the scattering and diffraction from

perfectly conducting cubic polynomial strips is derived and involves the incomplete

Airy integrals as canonical functions. The scattering mechanisms involved are de-

scribed by a new set of uniform reflection, first-order edge and zero-curvature diffrac-

tion coefficients that remain valid inside the transition regions and also provide

smooth connection into the regions where tile classic ray optical formulations still

apply. Although additional higher order mechanisms such as creeping waves, double

edge diffraction, and whispering gallery modes may also exist for the geometries con-

sidered, they will not be examined in this report. Also, this new solution is universal

in nature and can be used to effectively describe the scattered fields from flat, strictly

concave or convex, and concave-convex boundaries containing edges. Numerical re-

suits obtained using the extended UTD solution showed excellent agreement with

the method of moments for both polarizations, except for some limited regions in the

non-specular direction for the TE polarization where the higher order mechanisms

become significant.

The outline of this report is as follows: In Chapter 2, a uniform asymptotic

analysis for the plane wave scattering from a perfectly conducting cubic polynomial

boundary containing an edge is presented, and in Chapter 3 tile extended UTD

solution for the scattering and diffraction from cubic polynomial strips is formulated.

In Chapter 4, some indicative numerical results are presented and discussed with

their accuracy confirmed via comparison with reference moment method results. Ill

addition, results obtained using classic UTD are also shown to illustrate the need

for the new solution. Finally, some concluding remarks and the accomplishments of

this work are summarized in Chapter 5.
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It is assumed that all fields are tlme harmonic with t_me dependence e i_, wldeh

will be suppressed O_rougli0ut tiffs report. Also, the medium surrounding the scat-

terers is assumed to be free space.
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Chapter 2

Uniform Asymptotic Analysis

[.--

= =

-=:

In this chapter, a uniform asymptotic analysis for predicting the scattered fields

from perfectly conducting cubic polynomial strips is presented. The relevant canon-

ical geometry for the analysis that follows is a semi-infinite two-dimensional cubic

polynomial boundary illuminated by a plane wave as shown in Figure 2.1. The scat-

tering mechanisms to be examined, namely specular reflection, zero-curvature and

first-order edge diffraction are illustrated in Figure 2.2. As a plane parametric curve

the boundary C is given by:

_"(Q') : _z + _y(z) ; a _< x < oc (2.1)

where

y(_) = a0+ a,_ + a_ _+ _'_ • (2.2)

The zero-curvature point, zp, is a root of the second derivative of the surface, i.e.,

y"(zp) = 0 and is given by:

-_ (2.3)
xp ± 3a3

The scattered fields at any point P away from the surface boundary can be

expressed in terms of the usual radiation integrals over the electric current f, induced

on the boundary by the incident plane wave as follows:

kgO fc[_ × _ × g:(q,)]H_2)(kr)dl, (TM case) (2.4)

kftZ(Q,)× _]g_)(k_)at,(WEcase) (2.5)#,(p) ___

5
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containing an edge.
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where

=-

!

.m

= I_-PI-_ p- ¢(Q')" _ (far-zoneapproximation),

,_ = _cos0+_sin0,

£(Qr) = value of o_ at any point Q' on the surface,

H(_)(kr) = cylindrical Hankel function of the second kind of order zero,

Z0 = impedance of free space,

k = wavenumber of free space, and

dl' = llne integration element.

In the PO approximation to (2.4) and (2.5), the induced current is assumed to be

given by GO as follows:

2h' ×/I'(Q'), on the fit portion of the boundary

0, on the shadowed portion of the boundary

(2.6)

in which ¢_' is the outward normal to the surface and/t'(Q') is the incident magnetic

field at Q' that under the plane wave incidence assumption is given by:

{g,(Q,) = Z?'(_ x _')d k(r''_')
• .',t "i

_ejk(, ._ )

(TM case)
(2.7)

(TE case)

where

_' = _ cos 0' + 9 sin 0'. (2.8)

Using the assumed current in (2.6) and the large argument form of H(2)(kr) given

by:
f

H(2)(kr) .._ 21-_r e -jk_ , for kr >> 1 (2.9)

the far-zone scattered field assumes the form:

e-JkP (2.10)u:(p;o',o) __:F e,,_(O',O)--j

m
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where e,.i,(8', 8) is the angular field dependence and is given t)y the statlonnry phRse

integral

where

e_,h(O',0) = f_ f,,,h(z)e sk#'(x) ax (2.11)

dl' ,,,,,, { _' } (2.12)L,,,(,_) - _,_ t_ J" _ ,

¢(_) = _'(Q').(_' + _)= _c(o',o) + y(_)s(o',o), (2.13)

C(O',O) = cos0'+ cos0, (2.14)

S(0',0) = sin0' + sin0, (2.15)

dl'
- h(x)= _/1 + [y'(x)] 2, and (2.16)

dx

_p'(x) _ (2.17)
_'(Q') - h(_)

The next step in this procedure is the uniform asymptotic evaluation of e.,h(0',0)

given in Equation (2.11) ............

2.1 Uniform Asymptotic Evaluation of e_,h(O',O)

The integral in (2.11) can be transformed into a canonical form by first expanding

the phase function in a Taylor series around tile zero-curvature point x_,, i.e.,

¢(x) = ¢(xv) + (x - z.)¢'(xp) + (_ - xP)_ ¢"'(z,,) • (2.18)
3

Notice that the above expansion is exact since ¢"(x.) = 0 and ¢(")(x) _ 0 for every

x with n > 3. Next we make the following linear transformation:

¢(z) = _(,) = _ + Z, + ,_/3. (2.19)

where

= _(0)=¢(_,). and
1

= ¢'(_,,) ¢,,,_-_,,)

(2.20)

(2.21)

l
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The proper branch for _ depends on the sign of ¢'(z,,) and ¢'"(z,,), thus

f
=

L
if ¢'"(_) _<o

, + for ¢'(x,,)_O (2.22)
if ¢"'(zp) > 0

where L

I_l = I¢'(_)1 • (2.23)

Also, alternative expressions for _ and fl may be found directly from Equation (2.19),

i.e.,

2 (2.24)

2

where s,,2 = 4-(-/3) '/2 are the stationary phase points satisfying r'(s,,.z) = 0. Thus,

using Equation (2.19), the scattered field angular dependence, e,,h(O', 0), becomes:

e,,h(O', 8) = G.,,h(s)e jk'(') ds (2.26)
a

where

!

d_

c,,_(_) = /.,,.(_)y,
1

and

(2.27)

(2.2s)

(2.29)

a, depend on the sign of ¢'"(zp), thusThe proper branches for _,., and

_f¢,,,(_,,)< 0
, -4- for a_zp, or

if ¢'"(zv) > 0

! 1

I= I¢'(,_)- ,/,'(_,,)1'/_ ¢,,,[_.) ,I_,,I= Ia - x,,t ¢"' ) 2

(2.30)

(2.31)



la,_ e-J_

d_f = J;

ds

_f¢'"(_,) < o

if ¢'"(zv) > 0

1

, and (2.32)

d__ = __ . (2.33)

Next we empioy the Chester et al' expansion [i0] for the amplitude function in

Equation (2.26), i.e.,

a_,h(_)=
oo

tam ks "4-t3)" + b_,hs(s 2 -4-/3)"] (2.34)
m=O

and since only the leading terms in the asymptotic expansion of (2.26) will be re-

tained, Equation (2.34) may be written as follows:

a.,,,(_)= a;;'_+ .E 'h+ (_ + #)g.,,,(.) (2.35)

where

a3,h 1
= _[G,,h(8,) + a.,h(S2)], (2.36)

b_.h _ 1 [G.,h(s,)- G,,h(82)], and (2.37)
2sl

oo

g,,_(_) Z' '" _ _)"-'= [a,,, ks + + b:;,hs(s 2 +/3)m-t]. (2.38)
"=1

Now, using the far-zone observation approximation and the symmetry of the surface

near and around s = 0 or • = zv, Equations (2.36) and (2'37) simplify as follows:

where

dx I and (2.39)a_ 'h _-- G,,t,(s,,2)=f,,h(z,,2)_-s =,,2,
i

bo'" -_ 0 (2.40)

d_ = i T"(,_,,_), I +2(-Z)'/_.=.,,_ ¢"(_,,_) ¢"(_,,_) ,
and usingEquations(2.32),(2.33),(2.39)iand (2.41)wehave

_5,h= / I_o'"l_-J_if ¢'"(_.) < o
[ la3'_l if ¢'"(_.) > 0

(2.41)

(2.42)

=

I

=
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m

m

--=

where

I I±1"I<;'hl= IL,',(_',_)I_) = IL,_C_'a)lI_'"C_,')l

Then, using Equations (2.35) and (2.40) e.,,(0',0) may be given by the following

expression:

c.,,hIe',e)= ejkT_''_[a? ["_"
L s_

e#(a'+''U3) ds +: f o"_"

1

(,2 + #)g,.h(,)¢_c_.,+.,.'l_)d,I .
,I

(2.44)

The integrand of the second integral on the right is regular over the entire path of

integration, thus integration by parts yields

+

and using Equations (2.19) and (2.35)it simplifies further

e,,,h(8,O) e#'(")a_'h f ''_" [ a_'h, ~ o _J_c_.+.'l,,)d, + e_'_'c_'')jk(_ + (_)

(2.45)

where the terms of order higher than 1/k have been omitted. Next, we let s = k-1/:it,

= k-"/:'_ and G = k-l/3(= in (2.46), thus

e,,,,(O',o) ~ _J_o')k-,/:,_,."/.,,oo,, _ -_e j(kt+v'la) dt + e jk_(_) [ k-1/aa°'h

[JIn+ _o) c.h<<o}]jk,-'(¢o
(2.47)

Finally, the field angular dependence is given by the following expressions depending

on the sign of 4Y"(Zv) and ¢'(zv):

1. 4/"(ae,,) < 0 and ¢'(azv)_O

_j_- '_ s,hIn this case, /7 = ,re ,, (o = _e_, a0

comes:

r._ll s,hi

e.,,(o',o)~ eS_C"")k-_la;','hl_T(-<,,¢o)+ _s,<<°)/_-"la"l
LJ("-<_)

11

s,b _;__
and

1"3_ ,t! be-= a o e -._ r_quauon ta.u,)

+
j L,,,(a)
k _'(a)

(2.48)

=--

M



2. ¢'"(,,.,.)-. o ,,,t ¢,(_.,,).>o

In this case,/3 = o', 4. = (,, a_'" = la;'hl and Equation (2.47) becomes:

[ k-_lai;'hl j f.,,h(a)"

e.,,do',e) _ dk4'('")k-_la;'hlN(_,¢o) + d k_'(o)Lj-(gT_-d)+ k ¢,(_)

= =

Both o- and if,, are real quantities with ¢r>0 if ¢'(_,,)>0 and ¢.>0 if a<>x,,.

the incomplete Airy integral defined by:

012

N(_,-r) _ d ('_+_/_1dz.

2.2 Total Field Solution

(2.49)

_i(_, _) is

(2.50)

Using Equations (2.10), (2.48) and (2.49), the total scattered field is given by:

1. ¢'"(_,,) 5 0

u:(p)

with o-X0 if ¢'(x_)X0.

._ 1

+ejk_{o) k_,lai;'hle_ e-J7 f.,j,(a)] /
jv/_(a + _:) _ ¢'(a) J J

e-JkP
(2.r,1)

I

I

I

I

=

I

m

II

III

I

=

I

h

2. ¢'"(_,,) > 0

( j-_ __

) ejk¢(_:v ) e " k.

u;(p) ~ T [ -_-Ia;'"l_(_,¢,)

r .-,, ,.,,, ,-- " L,_,(_)I ] e-j_"+¢,,_(o) / _01_o_ ± _-_ • (2.52)

with a<>0 if ¢'(z,,)_0.

The q: in front of the expressions in (2.51) and (2.52) corresponds to the soft or

hard polarization cases. Notice that the last two terms in Equations (2.51) and (2.52)

12
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_r_ pllr,'ly e,tge diffract inn ¢o,_r_h,,tion_ wl,rr_ t_ _r._t _erm in (2.51) _,¢1 (2.._2)

appears to be a contribution from the zero-curvature point. In fact, three different

scattering contrlbutions_ namely reflection, edge and zero-curvature diffraction are

implicitIy contained in the incomplete Airy integral. It is advantageous to separate

the scattering mechanisms_ extract the appropriate reflection and diffraction coeffi-

cients_ and cast the total solution in a UTD format. In this form_ the solution would

be applicable to more general problems and also provide important physical insight

into the individual scattering processes. The detai]s of the separation procedure are

presented in the next chapter.
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Chapter 3

Extended UTD Solution

Formulation

I

m

R

The total scattered field from the semi-infinite perfectly conducting cubic polynomial

boundary of Figure 2.2 can be expressed as follows:

Ui'(p) -_ U;(p) + U_(p) + U_(p) (3.1)

where U_, U_ and U d are the reflected, zero-curvature and edge diffracted field

components. Although additional higher-order mechanisms such as surface waves,

double diffraction and whispering gallery modes may also exist, they will not be

considered in this analysis since the PO approximation to the induced surface cur-

rents does not account for such effects. Before proceeding with the expressions for

each field component, the various field contributions that are implicitly contained

in the incomplete Airy integral are extracted by deforming the originM contour of

integration into appropriate steepest descent paths through the critical points of the

integrand.

First, let's consider tile complex platte topology of the incomplete Airy integral

when the saddle points are real ((r < 0), as depicted in Figure 3.1. There exist three

cases depending on the location of the endpoint 7 relative to the saddle points zl

and z2, and Ai(_r, 7 ) may be written as follows:

A-_(_r, 7) = f_¢ ex,,(j_,2)ej(. _+,., I3) dz + ft.23 e7("_+:'_ I:_)dz
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Figure 3.1: Complex plane topology and contour deformation for the incomplete

Airy integral when tr < 0.



m
u

+ f. e"''+''/:'_ d_- ir-r _<-(-_)'/_, (3.2)

¢_¢ 31

if _(__)./2 < _ < (__),/?, and (3.3)

F °°_'_p(j¢') ei("'+""l:_)dz if 7 > (-_)_/_ (3.4)

Using the definitions for the ordinary and incomplete Airy functions found in Ap-

pendices A and B the integrals in (3.2)-(3.4) may be expressed in terms of these
:i z_ 7

functions as follows:

c_"l'_'_eJ(_z+'"/3_ez= g,,(_,_), (3.5)

f e j(_'+''_/:')dz = 7r[Ai(a) - jBi(o')], (3.6)
,72

e"_''_'+'_"/_)dz = g:,(_,_), (3.7)

f e j('=+''/:'O dz = _[Ai(cr) + jBi(_)], and (3.8)
,31

v'eexI'(JWl)ej(erz+z'a/3)dz = g,(a, 7). (3.9)

Thus, using Equations (3.2)--(3.9), the total scattered field solution in (2.51) and

(2.52) when o" < 0 (lit side of the caustic) is given by:

1. ¢'"(x,,) < 0

e- 5'- ' [AV(a) - jBV(a)]ul(-tr)'f' - (.:,]j_t ¢y'l 3 [ 2

-_ ._/_ .+ eJ_*¢_) e'_¢-'l [a,(¢)+ jBi(¢)]_[-(-¢) '/_- _°]}

+ e;k_¢"l{ ej'k"_ I_'" I [J-_+_g+ e_¢"_"+_/:')X;(°,]¢°)

-e-J'f"'h(a)]}) e-j_v (3.10)¢'(_) J v_

2. ¢'"(_.) > o

u;(p) _ + \v-_el_ _-,_1,_.._1,{eS_C._,)e_(-,,W_[Ai(o.) + jBi(o.)]u[(_o.),/_ _ (.]
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Figure 3.2: Complex plane topology and contour deformation for the incomplete

Airy integral when o" > 0.

+

+

.2 --or _/? ,,,e./k4'O'') e-'_ ( ) [A1 (o'1- jBi'(o')lu[-(-a) '/_ ¢_1}

{e)'k_'[-Je-J(_¢o+¢]/3)I,]eJko(°) ---_-_l_;'hl ,,'T_g + (_'¢°)

.e -j' f.,,h(a) })e -jk°_'(_)
(3.11)

where

It(er, _) = g3(o', (:_) (3.12)

g,(_,C.)

and u(x) is the Heaviside unit step function. The first two terms in Equations (3.10)

and (3.11) represent uniform reflected field contributions where the last two terms

represent edge diffraction contributions.

Next, let's consider the complex plane topology of _-_(_r, 3') when the saddle points

are complex (cr > 0), as depicted in Figure 3.2. There exist two cases depending on
......... :7 ........

the endpoint location relative to the zero-curvature point (z = 0)' and the incom-

if ¢o<_-(-o') '/_

if-(-_)'/_ < ¢o_<(-_)'/_

if G > (__)1/2
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plete Airy integral may be expressed in terms of the complete and incornplele Airy

functions in a fashion similar to the previous case, i.e.,

]_](o-,3,) = g2(cr,3,) + 27rAi(o') if 3' < 0, and (3.13)

= g,(_,3') if3' > 0. (3.14)

Thenl using Equations (3113) and (3.14), the tot_iscattered field of (2.51) and (2.52)

when _r > 0 (dark side of the caustic) is given by:

1. ,'"(_,,) _<o

u;(p)

2. _'"(_,,) > o

"; T ( v/_ne k_ta;'hlAi'(a)u(-(o)

+

(3.15)

u;(p) eJk4_(xp) 21re.i_ 'T ( v/_ k_'la_;"lAi(o')u(-(o)

_+¢_-- + e--i("_°+_/a)Id(o. , (,,)]

(3.16)

where

i_(_,¢) = / g"(_'¢°) if ¢o_<0 (3.17)

( gi (_r, (,,) otherwise

In this case the first term in Equations (3.15) and Equation (3.16) represent

zero-curvature diffraction contribution where the last two terms in (3.15) and (3.16)

represent edge diffraction contributions. Notice that the zero-curvature diffraction

contribution is a uniform version of the complex ray (evanescent) field interpretation

of Ikuno and Felsen [11, 12], and it appropriately reduces to their expressions when

i
I

I

I

E
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tr >> 1. The main advantage of our formulation is of course uniformity, and also

the need for a complex extension of the reflecting boundary and the evaluation of

surface parameters in complex space is avoided.

Another observation concerning the edge diffracted field component of the to-

tal field is that the last term in Equations (3.10), (3.11), (3.15) and (3.16) can

be recognized as the PO half-plane diffraction coefficient, and using the following

expressions:

f,,h(a) (a) (Q,) = h(a) (3.18)
._ sin _,

= h(a)t (Q_) (h i + = h(a)C(_p',_)q_'(a) " ' • 6) (3.19)

w

L _

w

w

w

it may be written as follows:

DPO, , , e-J_ (sin_,'; sin_) (3.20)
.,,h t_, _) = + vrf_ (COS _' + COS_)

where _,' and _, are the angles of incidence and observation, respectively, measured

from the edge-fixed coordinate system. It is well known that the PO diffraction

coefficient does not satisfy reciprocity nor does it satisfy the local boundary condition

on the surface for the TM polarization case. These shortcomings produce errors in

the total scattered field for observation points away from the optical boundaries.

A rigorous method of providing the necessary corrections to the PO approximation

involves the introduction of an additional non-uniform induced current near the edge.

A rather heuristic but simpler approach for improving the PO half-plane diffraction

coefficient is to introduce a pair of edge correction multiplication terms derived by

James [13], i.e.,

(7 ' = , (3.21)sin( /2) sec( o'/2) and

= cos(¢/2) csc( /2) (3.22)

which correct the PO diffraction coefficient so that it yields the exact diffraction

coefficient outside the optical boundaries. These correction factors reduce to zero

19
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Figure 3.3: Geometry for the reflected field from a cubic polynomial strip.

near the optical boundaries, and therefore they do not affect the cancellation of

singularities or the compensation of discontinuities in the reflected field components.

A final comment about the total field solution in Equations (3.10), (3.11), (3.15),

and (3.16) is that it remains valid for any value of the cubic polynomial coefficients

a., a,, a2, and a3 and one can show by carefully taking the appropriate limits that

it reduces to the half-plane solution when a2 and a3 go to zero, and also reduces to

the solution for a semi-infinite parabolic screen when a3 goes to zero.

We are now ready to derive expressions for the individual scattered field con-

tributions from a finite cubic polynomial surface using the expression for the total

field from the semi-infinite surface given in (3.!0), (3.11), (3.15) and (3.16) and by

expressing the quantities a o_'h, _r and (, in terms of the local surface parameters

relevant to each scattering mechanism.
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3.1 Reflected Field Solution

The geometry for the reflected field appears in Figure 3.3. The reflected field con-

m

i
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trlbutlon consists of two specular components that only exist in the lit side of the

caustic. It is given by the following expression:

v;(e) ~ v;'(e)_,(b- _,) + vT(p)_,(xT_- a) (3.23)

where U_ ''2 (p) are tile two specular contributions given by

i_ ,h,'(O' )._iu:'._(o)~ dk_'('_'_'.')_'n,_(O' ) n,(O'_.7, ,-._,_
,s _, rl, 2 ) ,

eikr'(Q'_,2)'_ e-ikP

v9
(3.24)

R,(Q',.,) is the principal radius of curvature at the reflection point given by

R ' h3(x_')
.(Qt,) : y"(x_,)

(3.25)

and x,._.2 are the specular points found by

-a_ + _/a_- 4a.,a,
Xrl,_ : 253

(3.26)

where

_, = _.(_i+,_)+a,_l.(_i+_)=C(O',O)+a,S(O',O), (3.27)

a, = 2a2_I. (._i + .i")= 2a2S(0',0), and (3.28)

a:) = 3a.s_. (h i + k")= 3a.)S(0',8). (3.29)

The quantity s,h(Qrl) is the uniform acoustic soft or hard reflection coefficient that

!

remains valid as Q',., --* Qp and is given by

' I T_(o',.) if R.q(Q'_,) > 0
7"t,,h(Q,,) = Rs,h -- -- (3.30)

T; (cry) if Rg(Q'_,) < 0

where

R,,h = _T:I:;' for a perfectly conducting boundary, (3.31)

•7 ._17

T,.(o,.) = x/_er_l'e-J_e -')s"" [Ai(-er,.)- jBi(-o'_)], and (3.32)
7

or k[e'(Q'_,)- (Q,,)] .(._'+
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Figure 3.4: Geometry for the zero-curvature diffracted field from a cubic polynomial

strip.

Ill

The quantity T, (err) is the appropriate transition function that cancels the GO field

singularity at the caustic. Also, when the specular point is far removed from the zero-

curvature point (observation in the deep lit side of the caustic), o'r >> 1 and using

the large negative argument forms of the ordinary Airy functions (see Appendix A)

we have that T,(a_ >> 1) ,-- 1 and Ti.,,h -_, ]:i.,,h so that the extended UTD reflected

field solution of Equation (3.24) reduces to the usual GO expression for tile reflected

field.

3.2 Zero-Curvature Diffracted Field Solution

U

i

m

I

u

g

The geometry for the zero curvature diffracted field is shown in Figure 3.4. The

zero-curvature diffracted field contribution exists only in the dark side of the caustic

lira
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and compensates the reflected field discontinuity. It is given by

u;(p) ~ _Jk_'l¢_).._'v_.rO,_oV(¢,l..,,_-J_o,,(_,,- _),,(b- _,,) (3.34)

where 79'_,,h_wvJrr3'_ is the scalar zero-curvature diffraction coefficient and is given by

where

y'"(z,,-----_ L_(_,', _)Ai(a_)

Icos( )p

(3.35)

(3.36)

_ y'(x,,) 1

with c, h(zv ) and c2- h(rv )

is the diffraction coefficient angular dependance, and

Ic(¢,_,)1
_.,I_,c(_', _) - _s(_,, _)l,/Z" (3.37)

Notice that the zero-curvature diffraction contribution is significant near the caustic

and decays exponentially away from the caustic as Ai(crc >> 1) _ 0.

3.3 First-Order Edge Diffracted Field Solution

The geometry for the edge diffracted field is illustrated in Figure 3.5. The edge

diffracted field contribution consists of two components (one from each of the two

edges) and is given by

Va_(p) = U]=(p) + U]"(p) (3.38)

where

U]o._(p) ,_ e_ " tvo _j.. _ rc_, _o_k_'(o" _)._"e-Sk,
' s,ht_Ola,b) _ , v_ (3.39)

and 7):_,h(Q'_,_)is the scalar uniform edge diffraction coefficient that remains valid as

Q,',,s ---* QI," It is comprised Of two parts, i.e.,

,. ! i,')ttp Q! !Vs,h(Qa,b) A"s,h( _,b) + D:,h(Q.,b) (3.40)
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Figure 3.5: Geometry for the edgediffracted field from a cubic polynomial strip.

nh_,/,q, _ is the half-plane diffraction coemcient given bywhere r,s, h L_ ,l,l, ]

,,,h_Wa,b/- 2_ sec 2 2

D" to, _ is a term that provides curvature correction and is given byand .,,h_W.,bS

D"..j,(q'_,b) = T

(3.41)

d,,,t,k_eJ¼ 2

y"(a,b) {5 tL.(_o.,_,vo,_) T.(_o,_,(.,_)
T2(_o,_,_,_,)

if u'"(_,b)9. (_' + _") < 0

if y"'(a,b)f_. (._ + _") > o
(3.42)

where

!L.(_,_,_,_,o,,,) =

O'a _b

ld,C(_, s,_.,s) _ d2S(so, ,,p_,b)l.,/3cos

j ej(._l_.l+l¢l../:,){ g;(,_,l¢l)+ I¢1----_ + g;(_, I_1)

= -T_(_, I¢1),

= hi

sgn

(3.43)

if ,_+ Iffl_<__o
, (3.44)

if _r + I(I 2 > 0

2 I._ Id:,C(so',b,_o_,_) + d4S(So'.,_,Soa,b)ly'"(a,b) ld, C(_o'.,_,_o.,_) - d',S(so'.s,,S°.,_,)I '/:;

• # ' z " _ #)]

(_'+ )+u( ,,)_( +
¢,,(,_,b)_. (_, + _')

(3.45)

(3.46)
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_a,b

1

d t t

d_,t, = -4-1,

+y'(a, b)
d, = -h(a,b) '

1

d,, = _(a,b)'
+ y'(_,b)y'(_,,,)

d3 = =t=
h(a,b)

y'(a,b)- y'(_,,)
dl = h(a,b)

, and

a_ bX xp _ (3.47)

(3.4s)

(3.49)

(3.50)

(3.51)

(3.52)

Notice that the curvature correction part of the uniform edge diffraction coefficient in

Equation (3.40) provides significant contribution near the reflection shadow bound-

ary (RSB) where o + (2 ._ 0. In fact both the half-plane and curvature components

in (3.40) become singular near the RSB, however these singularities cancel each

other out and the total diffraction coefficient remains finite. Away from the RSB

(a + _2 >> 0) the curvature correction component reduces to zero as the diffraction

transition function Ta(cr,_) _ 0, and thus the edge diffraction solution reduces to

the half-plane solution as it should.

_m

L
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Chapter 4

Numerical Results and Discussion

In this chapter, some numerical results for the scattered fields from a general cubic

polynomial strip are presented. The scattering geometry and the relevant parameters

are illustrated in Figure 4.1. The accuracy of the extended UTD solution is verified

via comparison with method of moments results. Also, some results obtained using

classic UTD are shown and illustrate the need for the new solution.

The first example considered is a cubic polynomial strip with a0 = 2.0_, al = 0.5,

a2 -- 0.1)_ -1, a:_ = 0.1)_ -2, a = -1.5_, and b = 1.5_. In this case both edges

are far removed from the zero-curvature point and thus the two reflection shadow

boundaries and the caustic of the reflected rays are clearly distinct. Figure 4.2 shows

a plot of the magnitude of the various field contributions to the total field for the

TM polarization case and an angle of incidence 0 _ = -45 °. Notice that the reflected

field component exhibits a total of three discontinuities. The first discontinuity

occurs across the caustic of tile reflected rays at 0 ._ -82 ° and is compensated

by the zero-curvature diffracted field. The second discontinuity occurs at the RSB

associated with tile edge Q, at 0 _ -50 ° and is compensated by the edge diffracted

field from Q_. Similarly the third discontinuity occurs at the RSB associated with

the edge Qt, at 0 _ -23 ° and is compensated by the edge diffracted field from Qt,.

Also notice that the two edge diffraction terms become singular near the incidence

shadow boundary (ISB) at 0 = 135°; however, they combine to give a finite result.
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Figure 4.1: Scattering geometry and relevant parameters for the numerical results.
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Figure 4.3 shnws a plo! for the total.qcatleredfieldin terms of lfisfallcecho wMth

for the TM polarization. Tlle extended UTD result shows excellent agreement with

the method of moments where classic UTD gives an erroneous result near the caustic

at O _ -82 °, and in both the lit and dark sides. This is expected since tile classic

UTD formulation does not contain zero-curvature diffraction information in the dark

side and also uses the non-uniform GO expression for the reflected field contribution

in the lit side. Figure 4.4 shows results for the bistatic echo width for the TE

polarization. Again the extendedUT_D result_shows good agreement with method of

moments. The discrepancies for observation directions near grazing are attributed

to higher order mechanisms missing from the total field. These higher order effects

such as edge exited surface rays and whispering gallery modes are stronger for this

polarization since the grazing fields do not vanish on the boundary as is the case for

the TM polarization. The failure of the classic UTD near the caustic is again clearly

illustrated. Figures 4.5 and 4.6 show plots of the mouostatic echo width for the

TM and TE polarizations, respectively. The extended UTD solution gives accurate

results for the monostatic case also, except for the regions where the higher order

mechanisms become significant. Contrary to tl'le classic UTD result, the extended

UTD solution remains finite and continuous across the caustics.

For the second example we consider a cubic polynomial strip with a, = 2.0A,

a, = 0.5, a2 = 0.1A-', a 3 =O.1A -2, a = -0.33A, and b = 1.5A. In this case, the edge

Q, coincides with the zero-curvature point Qv and thus the RSB and the caustic of

the reflected rays coalesce to form a composite shadow boundary. Figure 4.7 shows

a plot Of the bistatic echo width for the TM polarization and an angle of incidence

6' = -45 °. The classic UTD result exhibits a singularity at the RSB associated with

edge Q,, where the extended UTD result remains finite and is in excellent agreement

with the reference solution. Figure 4.8 shows a plot of the monostatic echo width for

the same geometry. Again the non-uniformity of the classic UTD solution is clearly
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evldent where the extends'el UTD solntion rem_in,_ valid across the R,qFt and reduces

to the classic UTD result away from the transition region.

The remaining two examples illustrate the universal nature of the extended UTD

solution. For the third example we consider a cubic polynomial strip with a_, --=2.0)_,

al = 0.5, a2 = 0.1)_ -1, aa -- 0.0)_-:, a = -0.33A, and b = 1.5)_. This of course

corresponds to a parabolic screen and is well known that classic UTD gives accurate

results. In this case the zero-curvature point theoretically moves to negative infinity.

Figure 4.9 shows a plot of the monostatlc echo width for the TM polarization and

the extended UTD solution remains valid and shows excellent agreement with the

reference solution.

For the final example we consider a fiat strip by letting both the quadratic and

cubic coefficients go to zero. Figure 4.10 shows a plot of the bistatic echo width for

the TM polarization and an angle of incidence 8' = -45 °. Tlle extended UTD solu-

tion remains valid for this special case also, and clearly demonstrates its flexibilily

for treating general surfaces that are highly curved, slightly curved, or completely

fiat.
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Figure 4.2: Scattered field contributions (TM polarization case) from a cubic polyno-

mial strip with a_ = 2.0A, al = 0.5, a2 = 0.1A -I , a_ = 0.1A -2, a = -1.5)_, b = 1.5_,

and angle of incidence 0'= -45 °.
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Chapter 5

Summary and Conclusions

= _

!

E_

m

L

We have presented an extended UTD solution for the scattering and diffraction

from cubic polynomial boundaries containing edges. This new solution involves the

incomplete Airy integrals as canonical functions and effectively describes the tran-

sitional field behavior associated with composite shadow boundaries and caustics of

the reflected rays. The total solution is presented in a ray optical format by deriving

the appropriate uniform reflection, zero-curvature and edge diffraction coefficients

that remain valid inside the transition regions, and also provide smooth connection

into tile regions where the classic ray optical formulations remain valid.

It was shown by comparison with a reference method of moments solution that

the extended UTD TM polarization solution yields excellent results. The TE polar-

ization solution also showed good agreement with the reference solution although it

would benefit from the inclusion of higher order effects such as edge excited creep-

ing waves, double edge diffraction, and whispering gallery modes in certain regions

where grazing fields exist. The failure of classic UTD solution to describe the scat-

tered fields near caustics of the reflected rays and composite shadow boundaries was

also clearly illustrated. The universal nature of the extended UTD solution was

demonstrated by considering examples of a parabolic screen and a fiat strip. In both

special cases, the new solution gave excellent results. Therefore, the extended UTD
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Appendix A

Ordinary Airy Functions

Tile ordinary Airy functions satisfy the following differential equation:

(A.1)

which has two independent solutions, Ai(_) and Bi(cr). In integral form they are

given by

1

Ai(cr) _ 2_- _f._, eJ("_+_/:')dz (A.2)

Bi(o') = j f. e j(''+_"/3) dz (A.3)
271" _._+ I.+._

where the contours of integration L21, L23 and L3w are shown in Figure A.1. For

small arguments they can be computed using their ascending series form [14], i.e.,

m

where

Ai(a) = c,f(a) - c,_g(tr) (A.4)

Bi(_) = VS[_,f(_) + _9(_)] (A.5)

1.4 6 1 "4 " 7o.9
f(_) = a + _,_'_ + --g-o" + 9 +""

2al 2i5aT 2.5.8o.1.g(a) = a+-_ +-- + 1------0-- +""

c, = Ai(0): Bi(0)/v_ = s-_/z/r(2/3)

c2 = Ai'(0) = Bi'(0)/v_ : 3-'/3/F(1/3).

41
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Thclr large argument forms ar_ given by

-- " I 2 .*I/_

/'2 :lM
Ai(-<,-) -.. ,,-'/_<,--'/"sint,_<_

Bl(o') _ 7r-i/20"-I/ie -_','=/_

[2 "_i' 4)ni(-_) ~ .-'/_-'/'cost_ +

+ 7 (I,,g <,1< 2_-13)

(I,<rg<_1< ,_13)

(l_g<,l < 2_/3).

Complete asymptotic expansions may be found in [14].

(A.10)

(A.11)

(A.12)

(A.13)

i
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Appendix B
= : _£; :

Incomplete Airy Functions

m

I

g

The incomplete Airy functions satisfy the parabolic differential equation applied by

Fock [15] and others to the study of fields near the surface of convex diffracting

bodies, i.e.,

0 0- _r- j_--_ y(a,7) = 0 (B.1)

which has three independent solutions, g,(_r, 7), i = 1, 2, 3. In integral form they are

given by

/ocexp{j¢_) ej{_+z._13 ) dz ;g,(_r,7 ) = i= 1,2,3 (B.2)

where the contours of integration are shown in Figure B.1. The functions g2 and g:_

can be obtained from gl and the ordinary Airy functions as follows:

g2(tr, 7) = g,(tr, 7 ) - 2_rAi(tr), and (B.3)

g:,(a, 7) = g,(tr,-y)- _r[Ai(a) + jBi(a)]. (B.4)

For small values of tr, gl can be computed using its ascending series form [9], i.e.,

g,(_,_) = _ a,,(_)a" (B.5)
tl------O

where

a,,(3') = g,(0,3')= eJ"/_3-2/:'F(1/3,-JT:'/3), (B.6)

a,('_) - ff g,(O,7)=-e-J'_/63-'/3F(2/3,-JY_/3), (B.7)
¢Ja
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a,,(7) = a,,-3(7) + jaJ,,_._(7) (B.9)
n(n - 1) , n>3

and F(x, y) is the incomplete Gamma function. The asymptotic forms of gj are given

by

g, (0., 7) "_ J (B.10)
o-+7 2

e-j](-.)"/_
g,(_,7)

(_0.)1/,J

i 2

2j 0"+7 2

_¢ c_+_'_/_) ('r >>I_1'/_)

j_.. F'(r/2) e¢,,2]v/-_e , u(-r/) 2jr/

1 ej(_+._.,/.3)

,1(-,_ ) '1'
(0. <<-1) (B.11)

where

2 _0.)3/2] 1127/ = + 0.7 + 73/3 + _( ; 7_(--0.) '/2 (B.12)

and F(z) is the Kouyoumjian-Pathak transition function [5]. Complete asymptotic

expansions for gl along with some representative plots may be found in [9].
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